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Recently Lloyd and Zurek studied the algorithmic complexity of the spin-echo 
effect and concluded that the overall complexity of spins together with the 
magnetic field grew slowly even during the rephasing stage. In this paper we 
show that, in contrast to their conclusion, the complexity decreases during the 
rephasing stage. We also clarify the origin of the disagreement. 
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1. I N T R O D U C T I O N  

Recently Lloyd and Zurek (1) investigated the spin-echo effect (2-s) by means 
of statistical entropy and algorithmic complexity. 16'7) They studied the 
following idealized model(l'4'5): The system consists of a magnetic field H0 
and N ( >> 1) spins. The magnetic field is static and points along the z axis. 
In the ground state the spins also point along the z axis. At a certain time 
(say, at t = 0) the spins are aligned along the x axis by a resonant radio- 
frequency pulse ("re/2 pulse"), and then the ith spin begins to precess in the 
x - y  plane at the Larmor  frequency co t which is determined by the strength 
of the magnetic field at its site. Hereafter we refer to the time t = 0 as the 
initial time and the state at t = 0 as the initial state. Since the Larmor 
frequencies {coi} of spins vary slightly around a value ~o o because of the 
inhomogeneity of the magnetic field, the precession angles {r become 
different as t increases. At a time t r a second pulse ("Tr pulse") conjugates 
their phases. Because individual spins keep precessing at their initial 
frequencies coi, all spins converge back along one  direction, say ~eoho, at 
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time 2tr. (The spin-spin and spin-lattice relaxation times are assumed to 
be longer than 2t~.) 

One of their most remarkable conclusions is that although the algo- 
rithmic complexity of the state of the spins rapidly increases during 
0 < t < t,, and then decreases during t~ < t < 2 t ,  the overall complexity 
K({r {ogg}) of spins together with the magnetic field grows 
logarithmically as a function of the elapsed time: 

K({r {co~})-K({Lr162 {Lco,/,4co..I}) 
= K( {  Lo~i/zlo~A }) + K(Logo t/zf r + const (1.1) 

where LxJ is the greatest integer which is less than or equal to x, A co (resp. 
Ar is the accuracy within which the Larrnor frequencies (resp. the angles 
of spins) are determined, and K(n) [resp. K({ni})] is the complexity of an 
integer n (resp. a list of integers {ni}). Since K(n) is approximated by 
log2 [n[, Eq. (1.1) indicates that K({r {co,.}) increases as the logarithm 
oft. 

This conclusion, however, seems contrary to one's intuition. Because 
the complexity of the state of the system is defined as the length of the 
shortest program that can print out the description of the state, (6'7) it 
should be determined once the state is given (provided that the accuracy 
of the description is fixed). Moreover, at time 2tr the system returns to the 
initial state in the sense that the spins are all lined up again and the 
magnetic field does not change from the initial state at all. Therefore the 
complexity should also return close to the initial value (i.e., the value at 
t = 0) at time 2tr. In fact, since the description of the state of this system 
at time t is given by the list {r ~b2(t),..., Cu(t), o91, co2,..., CON}, it can be 
printed out by a program that includes only ~b~r and {coi} as a data part 
at time 2t, because r ~b,~ho for all i. Therefore an upper bound of the 
overall complexity K({r {cog})is given by 

K({Lcoi/aogJ }) + K(Lr162 + C, (1.2) 

where Cj is the length of the program outside the data part and depends 
on neither t nor N. The value of Eq. (1.2) is smaller than that of Eq. (1.1) 
provided that mot > ~,r that is, except the very early time. 

In the next section we investigate the algorithmic complexity of this 
ideal spin-echo phenomenon near time 2t~ and show that the overall com- 
plexity of spins together with the magnetic field decreases as the logarithm 
of 2t~-t. The origin of the disagreement with Lloyd and Zurek ~I) is 
discussed in Section 3. 
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2. COMPLEXITY NEAR TIME 2tr 

The way to estimate the complexity is simple: During t > tr, the angle 
~b;(t) of the ith spin is given by 

q)i( t ) = ~echo "}" (Di( t - -  2 t r )  (2.1) 

It is obvious that one can calculate {q~(t)} from the data ~becho, {~i}, and 
t -  2t~ by using this equation. (Note that it is t - 2 t ,  not t, that is regarded 
as data. We discuss this point in the next section.) Therefore an upper 
bound of the complexity is given by the length of the program that 
calculates {~be(t)} by using these data, which is equal to the sum of the 
complexities of these data and the length C2 of the part of the program that 
specifies the algorithm for the calculation. The complexities of ~beeho, {e~;), 
and t - 2 t r  are given by K(L(Joeho/eeJ), K({L~#Ao~A }), and K([_(t- 2tr)/~,_J), 
respectively, where eo (resp. 5,) is the accuracy of ~b,~ho (resp. t -  2t~). Note 
that they should satisfy 

~ +~o;e,+ Ao9 ]t-2t~] <Aq~ for all i (2.2) 

to make the computational error of Eq. (2.1) less than A~b. Thus, 

K( {~ (t)}, {o~;)) ~< K(L~oo~o/~ J) + K( {l o~,/~oj ) ) 

+ K(l(t-2t~)/e,.J)+ C2 (2.3) 

for t satisfying Eq. (2.2). For most times t in this period it is reasonable to 
estimate K({~b;(t)}, {o9~}) by using the right-hand side of Eq. (2.3) because 
K( { Lco~/Aa~_J }) <~ K({~bi(/)}, {a~} ) + O(1 ),~6) and Eq. (2.1) is so simple that 
the algorithm for the calculation is very short. Moreover, since 
K(l(t-2t~)/e~_J) is approximated by log21lt-2t,l/e,J, K({~b;(t)}, {~o~}) 
decreases as the logarithm of 2 t r -  t. 

3. S U M M A R Y  AND DISCUSSIONS 

We have studied the algorithmic complexity of the spin-echo effect and 
concluded that the overall complexity decreases near time 2tr in contrast to 
the result of Lloyd and Zurek. ~1) 

Where does this disagreement originate? First, the essential difference 
between their estimate Eq. (1.1) and our Eq. (2.3) is that t - 2 t r  is replaced 
with t in their equation, i.e., in their estimation t (with the appropriate 
accuracy) is required as a part of data from which the description of the 
state at time t is calculated. It is clear from Eq. (2.1), however, that it is 
t -2tr,  not t, that is necessary. For example, when t =  10,000e, and 
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2t, = 10,00let, two numbers 10,000 and 10,001 are not necessary as long as 
- 1 ( = 10,000 - 10,001 ) is given. The reader may consider that there is no 
way to obtain t - 2 t  r other than by calculating it from t and tr, and even- 
tually both of them must be included properly in the program. However, 
there is no reason to forbid calculating t - 2 t r  beforehand and then incor- 
porating the answer in the program. In short, the value of t - 2 t r  surely 
exists on its own, independent of the way to obtain it, and therefore the 
program including it also exists. Consequently, it is valid to take the length 
of it as an upper bound of the complexity. 

Here we note that in our discussion the complexity of the generator of 
the 7r/2 pulse is not considered, because we are dealing with the complexity 
of spins and the magnetic field as in the discussion of Lloyd and Zurek. If 
one wishes to discuss the complexity of the whole system (spins + magnetic 
field + generator), it should be noted that the generator must include t r as 
data which specify the time of reversal, and consequently the complexity 
includes a term of the form log tr. This is reflected in the fact discussed in 
ref. 1 that an observer who wishes to take advantage of the energy in the 
echo pulse must possess the algorithmic information necessary to specify tr. 

Next, let us discuss subtle problems of the estimation of Lloyd and 
Zurek. Their estimation is based on the idea that because {~i(t)} can be 
calculated from {coi} and the value of t, the length of the program which 
includes them and does the calculation can be used as an upper bound of 
the complexity. Although there is a better estimation near time 2t~ as 
shown above, their idea itself is natural and expected to give good 
estimates of the complexity at small t. However, they used their idea some- 
what confusingly. Therefore it would be worthwhile to discuss the problems 
and restudy the complexity at small t. The point at issue is Aco in Eq. (1.1). 
Lloyd and Zurek supposed that the program should be able to calculate 
{~;(t)} within the accuracy A~ up to a time tma x which is greater than any 
relevant time, and consequently they deduced that Aco should be A~)/tmax. 
Thus, they gave the following estimate: 

K( {[.coitmax/A~ j ) ) + K(l_OOot/A# J) + const (3.1) 

including a large constant proportional to N log trnax in the first term. 
However, there are two problems in their discussion. The first is the mean- 
ing of Aco. Estimating the overall complexity, one should consider that 
{coi} play dual roles, one as part of the description of the state and the 
other as part of the data from which {~i(t)} are calculated. Although the 
accuracy necessary for the former role (referred to as Ago9 hereafter) and 
that necessary for the latter role (Acco) are quit distinct, they seem to be 
mixed up with each other in their discussion. While Ace9 is determined in 
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order that {~bi(t)} can be calculated within the accuracy A(~, Aae) should 
be determined in a similar way as that in which &b is determined, that is, 
by the power of measuring devices. Consequently, the program should 
include {e)i}, whose accuracy Ape) is equal to the lesser of Aaco and Ace). 
The second problem is about tm,x. TO obtain the description at t < tin, x, it 
is not necessary to demand that the program should calculate {~b;(t)} up 
to time tma x; it is enough to calculate them up to only t itself. Therefore 
their assumption that the program should calculate the state within the 
accuracy up to tma x is tOO strict and makes the program too long. 

The estimation for the complexity at time t proceeds as follows: 
Because Ace) is given by Afb/t, Ape) is given by 

Ape) = min{Ace), Ado)} = ~ Ado~ when 
(A~/t  when 

t < Aqk/A doa 
(3.2) 

t > A~/Adco 

By substituting above Ape) as Ae) into Eq. (1.1), we obtain the upper 
bound of the complexity given by 

K({Lcoi/A~coJ}) + K(Le)ot/ACJ) + const when 

K({kcoit/Ar K(Le)ot/A~J)+const when 

t < A(b/Ade) 
(3.3) 

t > Aqb/Aao9 

Note that the second expression of (3.3) grows by Nlog t rather than by 
log t. This is reasonable, because as t grows, the accuracy of the initial 
condition included in the algorithm must grow to give {~bi(t)} within the 
given precision Aaco, so that the length of the algorithm also grows. 

Let us return to the complexity during the rephasing stage. Using the 
above notation, Am in Section 2 should also be written as Aaco. The essen- 
tial point is that although their idea is natural, there is a better estimation 
of the complexity near time 2tr. Once again we note that our estimation in 
Section 2 is based on the same equation (2.1) as the one that Lloyd and 
Zurek used. The only difference is, as we have discussed, that in Section 2 
the expression t -  2tr included in Eq. (2.1) is regarded as one number which 
exists on its own. This suggests that to  estimate the complexity of a 
physical state, besides searching for an equation by which the state can be 
calculated, one has to consider how to "interpret" the equation to make the 
program solving the equation as short as possible. 
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